Developing pipelines for genetic biocontrol of vertebrates

Dr Stephen Frankenberg

Gene drives targeting female fertility or development are a potentially highly effective strategy for suppressing – or even eradicating – invasive pest populations

Success will depend on:

- efficient gene drive design
- > the ability to produce animals carrying gene drives

For good gene drive design, we need:

- suitable target genes essential for female development or fertility
- efficient copying of the gene drive in the cells ("spermatocytes") that develop into sperm

MEIOSIS: natural crossing over between chromosomes to repair DNA breaks

e.g. **zona pellucida** (coat surrounding egg)

Improving CRISPR-based gene drive copying efficiency

- Cas9: enzyme that cuts DNA in target gene at precise location (determined by guide RNA)
- Amount and timing of Cas9 is determined by the promoter in spermatocytes

zebrafish

Optimising gene drive copying efficiency

Clancy Lawler Dr Patricia Jusuf

Proof-of-principle "split gene drive" targeting *cyp19a1a* (aromatase) gene, which is essential for female development

Inserting gene drives into non-model species

Nuclear transfer pipeline for non-model species

fox cells

Deployment of a cat suppression gene drive

- Slow many decades
- Will require monitoring and strategic management e.g. regular releases of captive-bred gene drive males
- Inevitable resistance from crazy cat owners
- Future legislation to mandate gene drives in domestically owned cats produced by licensed breeders

Risk of introduction to non-target population

Solution:

Easier to engineer a gene drive-resistant allele (while maintaining normal functionality of the gene) than to engineer the gene drive in the first place

Acknowledgements

- Clancy Lawler
- Dr Ellen Cottingham

Prof. Andrew Pask & TIGR

- Gail D'Souza
- Naomi Tappe
- Felix Smits

Collaborators

- Dr Patricia Jusuf
- Dr Andrew French
- Prof. Ben Phillips
- Dr John Morrongiello
- Prof. Steve Swearer

Funding & other support

- Philanthropic donation
- Mount Rothwell Conservation and Research Reserve