Gene technology and its potential for pest control

Prof Paul Thomas

Director

Genome Editing Program

SA Genome Editing Facility

<u>Overview</u>

- <u>new</u>
- 1. Genetic biocontrol (gene drives)-what are they?-how do they work (CRISPR)
- 2. In what species have gene drives been developed? -invertebrates
 - -mammals
- 3. Could gene drives be developed in cats?-potential for suppression (modelling)-challenge/barriers

Genetics and transgenic animals 101

Cat genome on 19 pairs of chromosomes

"Transgenic" cat

What is a Gene Drive?

- Genetic construct (transgene) that promotes its own inheritance at a rate greater than Mendelian inheritance
- Potentially spreads through entire population and allows population-level genetic engineering (modification or suppression (fertility or sex bias))

<u>What</u> is a Gene Drive?

- Genetic construct that promotes its own inheritance at a rate greater than Mendelian inheritance
- Potentially spreads through entire population and allows population-level genetic engineering (modification or suppression (fertility or sex bias))

What is a Gene Drive?

- Genetic construct that promotes its own inheritance at a rate greater than Mendelian inheritance
- Potentially spreads through entire population and allows population-level genetic engineering (modification or suppression (fertility or sex bias))

<u>What</u> is a Gene Drive?

- Genetic construct that promotes its own inheritance at a rate greater than Mendelian inheritance
- Potentially spreads through entire population and allows population-level genetic engineering (modification or suppression (fertility or sex bias))

<u>Why</u> develop gene drives?

• Health, conservation & agriculture

Hundreds of mice that have been trapped during the plague on Qld's Darling Downs. (Supplied: Vicki Green)

Malaria is responsible for >400,000 deaths per year

Environmental damage/loss of biodiversity Agricultural loss of productivity/societal impact

CRISPR/CAS9 Genome Editing

Molecular scissors that cut DNA at a specific location

CRISPR enables generation of gene drive (transgenic) animals and gene drive activity

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-24790-6 OPEN

Gene-drive suppression of mosquito populations in large cages as a bridge between lab and field

Andrew Hammond ^{1,2,9}, Paola Pollegioni ^{3,4,9}, Tania Persampieri^{3,9}, Ace North ⁵, Roxana Minuz³, Alessandro Trusso³, Alessandro Bucci³, Kyros Kyrou ¹, Ioanna Morianou¹, Alekos Simoni^{1,3}, Tony Nolan ^{1,6,10 ×}, Ruth Müller ^{3,7,8,10 ×} & Andrea Crisanti^{1,10 ×}

The *t* haplotype – a natural gene drive in male mice

Developing sperm

- Male heterozygotes pass on up to 95% (females 50%)
- Male homozygotes infertile (t^{w2})
 Can we modify the t haplotype to create a suppression gene drive?

Birand et al. 2022 Molecular Ecology 31:1907–1923.

Aysegul Birand

Leveraging a natural murine meiotic drive to suppress invasive populations

Luke Gierus^{a,b,1}, Aysegul Birand^{c,1}, Mark D. Bunting^{a,b}, Gelshan I. Godahewa^{b,d}, Sandra G. Piltz^{a,b}, Kevin P. Oh^{e,f}, Antoinette J. Piaggio^g, David W. Threadgill^h, John Godwinⁱ, Owain Edwards^{e,j}, Phillip Cassey^c, Joshua V. Ross^k, Thomas A. A. Prowse^c and Paul Q. Thomas^{a,b,2}

PNAS 2022 Vol. 119 No. 46 e2213308119

First proof of concept for a mammalian gene drive

What about cats (and other invasive pest mammals)?

What about other vertebrates?

X-SHREDDER

N ~ 200,000

Male biassing drive

HOMING

female infertility drive

In(Area)

Aysegul Birand

Life-history parameters

	Survival probability				Probability of polyandry			Dispersal	
Parameters:						•			
Y K V									
Species	b	$n_{ m c}$	$age_{ m m}$	ω	$p_{ m m}$	d	A	$\Delta_{ m i}$	D
mouse	6	6	2	0.53	0.46	5000	40	0.4	3
black rat	4	6	2	0.62	0.68	1000	200	2	8
rabbit	4	4	3	0.82	0.20	25	8000	12.5	8
cat	4	2	5	0.85	0.25	2	100000	25	4
fox	4	2	5	0.88	0.76	2	100000	45	8

Island population of 200,000 cats

256 gene drive cats introduced

X-Shredder male biasing drive

Eradication in ~200 years!

Conclusions and Challenges

Genetic biocontrol (gene drive) technology is progressing in insects and mice – potential for disease control, conservation and agriculture

-stakeholder engagement, regulation, technical hurdles (inc. target population

specificity)

Cat genetic biocontrol

- -long timeframes
- -technical challenges (transgenesis, facilities, genetics, reproductive technology)
- -domesticated non-model animal

Stakeholder engagement (cf. CSIRO/Aditi Mankad stakeholder engagement survey (hypothetical "cat gene drive" scenario) Modelling informed by more accurate field data (CSIRO)

<u>Acknowledgements</u>

CRISPR Therapeutics

Fatwa Adikusuma Ashleigh Geiger Jayshen Arudkumar Joshua Chey Caleb Lushington Jesse Kennedy Lachlan Staker

Genetic Biocontrol Luke Gierus Gelshan Godahewa Mark Bunting

PCDH19 Epilepsy *Stefka Tasheva* Michaela Scherer

SA Genome Editing Sandra Piltz Melissa White

Lab Manager Suraiya Onnesha Modeling (Uni Adelaide) Aysegul Briand Thomas Prowse Josh Ross Phill Cassey

GBIRd consortium Royden Saah

t mice David Threadgill John Godwin

X-shredder CSIRO Owain Edwards Mark Tizard

Gene Drive Funding

Australian Research Council Linkage Grant with CAGT Ltd. (NZ) Australian Research Council Discovery Grant CSIRO Post-doctoral Fellowship

NSW and **SA** State Governments

Thomas lab

